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ABSTRACT

In this review we examine how self-paced performance is affected by environmental heat stress
factors during cycling time trial performance as well as considering the effects of exercise mode and
heat acclimatization. Mean power output during prolonged cycling time trials in the heat (>30°C)
was on average reduced by 15% in the 14 studies that fulfilled the inclusion criteria. Ambient
temperature per se was a poor predictor of the integrated environmental heat stress and 2 of the
prevailing heat stress indices (WBGT and UTCI) failed to predict the environmental influence on
performance. The weighing of wind speed appears to be too low for predicting the effect for
cycling in trained acclimatized subjects, where performance may be maintained in outdoor time
trials at ambient temperatures as high as 36°C (36°C UTCI; 28°C WBGT). Power output during indoor
trials may also be maintained with temperatures up to at least 27°C when humidity is modest and
wind speed matches the movement speed generated during outdoor cycling, whereas marked
reductions are observed when air movement is minimal. For running, representing an exercise mode
with lower movement speed and higher heat production for a given metabolic rate, it appears that
endurance is affected even at much lower ambient temperatures. On this basis we conclude that
environmental heat stress impacts self-paced endurance performance. However, the effect is markedly
modified by acclimatization status and exercise mode, as the wind generated by the exercise
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(movement speed) or the environment (natural or fan air movement) exerts a strong influence.

Introduction

Humans participating in prolonged physical activity
in the heat experience marked homeostatic disturban-
ces that may provoke premature fatigue and affect
both occupational work capacity and athletic exercise
performance.”” The etiology of hyperthermia-induced
fatigue seems to involve complex interaction between
cardiovascular alterations, peripheral (muscular) and
central nervous factors (see refs. 3-5 for recent
reviews). Independent of the relative importance of
the various physiological factors that may limit exer-
cise performance in a given condition, it is clear that
the limited ability of the human organism to tolerate
excessive increases in internal temperature is a chal-
lenge during physical activity in hot conditions, and
performance is further deteriorated if air humidity is
high,® air movement low or solar radiation is superim-
posed.” "’

When such adverse ambient conditions are combined
with elevated rates of endogenous heat production sur-
passing the body’s heat dissipating capacity, the resulting
heat storage and hyperthermia may only be prevented or
limited if artificial cooling is provided, or as observed for
self-paced exercise, the individuals lower the intensity
(ie. reduced power output and/or speed) and hence
reduce the metabolic heat production.''"® While lab
experiments with fixed exercise intensity may provide a
model for exploring the importance of certain physiologi-
cal factors,* analyzing changes in power output or speed
during self-paced exercise in the heat provides an oppor-
tunity to evaluate how the integrated physiological
response is affected by the environment in real life set-
tings. With this approach, the present review focuses on
the influence of elevated environmental heat stress on
power output during cycling time trial (TT) performance
and compare to changes in pacing during prolonged
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running. Comparison of cycling and running is of inter-
est since they represent exercise modes with differences
in heat production for a given metabolic rate and with
differences in movement speed when performed in natu-
ral settings. Specifically we will focus on A) how the com-
factors
(temperature, humidity, radiation and wind speed)
impacts prolonged performance, B) the importance of
the participants’ training- and acclimatization status and

bination of environmental heat stress

C) the influence of the work/exercise mode - with run-
ning and cycling as examples of exercise modalities that
elicit different degrees of endogenous heat production for
a given metabolic rate and are usually performed with
large differences in movement speed, that eventually will
influence heat exchange with the environment. In rela-
tion to C) it appears that running performance is affected
at much lower environmental temperatures than cycling
and in addition to the facilitation of heat dissipation, the
higher movement speed may also imply that outdoor
cycling performance benefits markedly from the lower
air density in the heat, > 18
has limited effect for running performance." In relation
to B) it has repeatedly been demonstrated that acclimati-
zation may alter the impact of a given heat stress with the
largest changes observed in dry environments, whereas
the benefit in hot and humid air is modest.*® Further-
more, untrained subjects seem to have a lower heat

while reduced air resistance

21,22 and

tolerance when exposed to passive heat stress,
performance deteriorates more for slower runners com-
pared to elite trained athletes."® Thus, both training-
and acclimatization status should be considered when
analyzing the environmental impact on exercise. In
regard to A) it is clear that temperature is important
but also that both humidity and wind speed modify the
%19 and for

outdoor exercise the solar radiation should also be con-

impact of a given temperature increase,

sidered.”® Several of the more than 160 existing heat
indices attempt to combine the relevant factors into an
integrated mathematical model,>® that may provide a
score used for categorizing the environmental heat
stress or providing safety limits for occupational work-
ers or competing athletes. E.g. the Wet Bulb Globe
Temperature (WBGT) has historically been used in var-
ious sport organizations for recommendations of event
cancellation or including additional “heat-breaks” if the
WBGT surpasses certain thresholds.***® However, the
appropriateness of the prevailing indices to identify
thresholds or predicting the impact of a given heat
stress on performance has to our knowledge not been
systematically analyzed in cycling”” During the last
decade several studies (see Table 1) have reported
power output from TT’s across a wide span of relevant
temperatures with various combinations of humidity
levels (consequently changing the environmental vapor

Table 1. Studies with average power output reported for prolonged time trials (TT duration above 30 min.) in the heat (30°C or above)

and with a corresponding cool control trial (20°C or below).

Temperature Relative Humidity Wind Peak heart Sweat rate End core Power output deficit
Reference (°Q) (and vapor pressure)  speed (m/s)  rate HOT (CON)  L/h HOT (CON)  temperature HOT (CON)  compared to control
Racinais' * 39°C 20% (9 mmHg) 9.5 175 (169) 2.1 40.2 (38.5)°C 16%
Racinais'> ** 39°C 20% (9 mmHg) 1 177(169) 2.5 40.1 (38.5)°C 2%
Lorenzo® * 38°C 30% (15 mmHg) 0.5 165 — 39.5 (38.8)°C 18%
Lorenzo® ** 38°C 30% (15 mmHg) 0.5 150 — 39.4 (38.8)°C 17%
Périard’? 35°C 60% (25 mmHg) 3 184 (179) 1.8(1.1) 39.8 (38.9)°C 13%
Keiser®* * 38°C 30% (15 mmHg) 3 183 (182) 14(0.8) 39.7 (39.2)°C 13%
Keiser®* ** 38°C 30% (15 mmHg) 3 186 (177) 1.7 (0.8) 39.6 (38.8)°C 7%
Périard'? 35°C 60% (25 mmHg) 4 183(182) 23(1.3) 39.4 (38.6)°C 18%
Périard”® 35°C 60% (25 mmHg) 4 183( 180) 24(1.8) 39.6 (38.8)°C 13%
Périard’* 35°C 60% (25 mmHg) 3 178 (178) 2.1(1.3) 39.8 (39.0)°C 13%
Roelands** 30°C 55% (17 mmHg) 0.5 180 (176) — — 11%
Roelands®® 30°C 55% (17 mmHg) 0.5 180 (184) 1.9 (1.6) 39.3 (39.0)°C 25%
Watson®” 30°C 55% (17 mmHg) 0.5 1.8(1.4) 39.7 (39.2)°C 23%
g9
VanHaitsma’” 35°C 25 (11 mmHg) 0.5 175 (175) — 39.2 (38.8)°C 16%
Schlader’® 40°C 14 (8 mmHg) 15 183 (176) 14 (1.0) 38.7 (38.5)°C 22%
Peiffer®® 32°C 40 (14 mmHg) 89 172 (168) — 39.5 (39.1)°C 6%
Romer’” 35°C 30 (13 mmHg) 0.5 — — 18%

*

Signifies studies with values reported pre-acclimatization (and post acclimatization in the same study marked with **) while subjects in the remaining studies

were considered either acclimatized or familiarized with the exercise set-up in the heat prior to testing. Data that wasn’t directly extractable was obtained via
personal communication with authors or estimated on the basis of provided data (when possible) - ”-" indicates that the present value was not reported or pos-
sible to estimate/obtain. Columns from left to right: name of lead author and article publication year, temperature in the hot time trial in degrees Celsius, rela-
tive humidity and absolute air vapor pressure in the hot time trial, wind speed in meters pr. second (which was set at 0.5 m/s if the time trial was indoor
stationary ergometer cycling without artificial airflow generation), highest heart rate in beats per minute observed during the hot and control trials, sweat rate
during the hot and controls in liters per minute either directly measured or calculated from body weight changes, core temperature in the hot and control trial
at time trial completion in degrees Celsius and percentage power output reduction in the hot trial compared to the control.



pressure and gradient for sweat evaporation) and differ-
ences in wind speed that may impact both dry and
evaporative heat exchange. Comparing the performance
impact (relative decline in power output compared to
control [cool-temperate air]) with the reported environ-
mental values for temperature, radiation (when relevant
i.e., outdoors), humidity and wind may allow for identi-
fying if existing indices include an appropriate weighing
of factors or develop a model that may be used for pre-
dicting the environmental impact on performance in
conditions with sustained high rates of metabolic heat
production.

Methodology

We used cycling TT as a model for this analysis as it is
the prevailing exercise mode in scientific studies and
as model for reviewing how exercise endurance is
affected in the heat, it provides the advantage of direct
assessment of power output as a measure of exercise
capacity. However, in terms of performance (i.e. speed
or time to complete a given distance) it should be
acknowledged that air density decreases in the heat,
allowing for a faster performance at a given power
output or maintained speed at a lower average
power.'>"” Nevertheless, comparing average power
output during prolonged cycling time trials in studies
that have been conducted in the heat (30°C or above)
with a matched cool/temperate control trial allows for
analyzing how work capacity is affected by the abso-
lute temperature, radiation, wind speed and humidity.

Based on the above, the database PubMed was
searched during March 2016 in accordance with
PRISMA guidelines,”®*’ using the first-order search
terms: ‘heat’, ‘hot’ and ‘hyperthermia’ in conjunction
with the second-order search terms ‘cycling’ and ‘time
trial’, resulting in the retrieval of 2747 articles in total. We
excluded reviews, conference proceedings, and interven-
tional studies employing methods such as pre-cooling or
pharmacological drug administration (data from placebo
trials not excluded), but no other limits were set in the
initial screening. Article titles and abstracts were subse-
quently screened for relevance, resulting in preliminary
inclusion of 20 articles for further review. Thereafter, arti-
cle full texts (retrieved via the University of Copenhagen
library) were screened independently by 2 reviewers (N.]J.
and L.N.) resulting in the inclusion of the 14 studies pre-
sented in Table 1, which all fulfilled the inclusion criteria
of utilizing a crossover design employing self-paced
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prolonged cycling (TT or preloaded TT with total dura-
tion of minimum 30 min.), with average power output
reported both for trials in the heat (air temperature >
30°C) and cool/temperate control (< 20°C) and with
values for relative humidity, wind speed and solar radia-
tion either reported, obtained via personal communica-
tion with authors or estimated/calculated on the basis of
reported values (e.g. for indoor trials radiation was esti-
mated to be negligible and when no fanning was provided
the wind speed was set to 0.5 m/s, as an estimation of the
air flow that is created due to leg movements and heating
of still air around the subject.”® Relevant data from inter-
ventional studies were extracted and included in the anal-
ysis, while data thought to be influenced by the
intervention were excluded. The following mean data
were extracted for all environmental conditions in the
selected studies: temperature, humidity, wind speed, sub-
ject acclimatization/acclimation status, familiarity with
TT and VO2max, TT duration, end point criteria and
venue, final core temperature, mean and peak heart rate,
sweat rate, rating of perceived exertion and mean power
output. If not directly reported, thermal indices were cal-
culated; WBGT according to the Liliegren formula,”!
UTCI via an online calculator on the official UTCI web-
site,’”” and a new integrated heat stress index using the

VWS

ative humidity (%) and WS: wind speed (m/s). Data not
numerically reported have carefully been extracted from

formula = (T: absolute temperature (°C), RH: rel-

figures or obtained via communication with correspond-
ing authors. The methodology outlined above was
adopted to eliminate bias in our searching and selection
procedure since the inclusion (or exclusion) of a study
was considered independently by 2 reviewers and was
based on content (i.e., study employing self-paced pro-
longed cycling and providing all relevant data necessary
for the purposes of this review), and not on quality, jour-
nal or other factors prone to bias.

The environmental influence of temperature,
humidity and wind

As illustrated in Figure 1A, ambient temperature as a
stand-alone factor is a poor predictor of the integrated
environmental heat stress and apparently 2 of the prevail-
ing heat stress indices, WBGT and UTCI (see Fig. 1C and
D), also fail to predict the impact of environmental heat
stress on TT performance. However, in studies where
wind speed, humidity and radiation are controlled
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Figure 1. Performance deficit (percentage reduction in power output during hot TT compared to cool control TT for all studies in Table 1
meeting the inclusion criteria specified in text and Table 1 description) vs. ambient temperature (panel A); integrated index (panel B;
with the index calculated as absolute air temperature [= dry bulb temperature for indoor studies and 0.7 * dry bulb + 0.3 * black globe
for outdoor studies] multiplied with the relative humidity and divided by the square root of the wind speed); Wet Bulb Globe Tempera-
ture (WBGT; panel C) and Universal Thermal Climate Index (UTCI; panel D). Black filled circles represent values from studies with unaccli-
matized subjects (specified in the study description and subsequently acclimatized in the study as specified in Table 1) while the open
circles are from studies with acclimatized subjects or trained subjects partly accustomed with exercise in the heat.

(remain constant across trials),”>® performance and the
physiological responses are directly influenced by ele-
vated air temperature, as it will limit dry heat loss and
either 1) restrict the upper limit for heat dissipation
thereby restricting the exercise intensity that may be
endured due to constrained ability to maintain heat bal-
ance (i.e. storage and elevated body temperature become
the limiting factors for the metabolic heat production
that the athlete in the given temperature setting may sus-
tain) or 2) it will elevate the skin temperature thereby
superimposing a cardiovascular restrain on the ability to
support the increased need for skin perfusion and main-
tenance of stroke volume and arterial oxygen delivery to
the exercising muscles (for a detailed discussion of fatigue
mechanisms and the impact of hyperthermia-induced
cardiovascular versus central nervous temperature
changes, please see ref. 39). The temperature threshold
where endurance performance becomes limited by the
environmental setting is clearly affected by the combina-
tion of humidity (vapor pressure) and wind speed, as
they in combination determine the upper limit for

evaporative heat loss, while air movement also influences
dry heat loss. The direct and independent effects of
humidity,6 wind speed,g’w’40 and radiation on exercise
endurance and physiological responses have been verified
in laboratory studies with fixed intensity,”* and the inte-
grative influence of air temperature, humidity and wind
speed on performance is illustrated in Figure 1B.

During outdoor cycling in flat terrain the movement
speed is usually well above 10 m/s in trained subjects.'>*!
However, as illustrated in Table 1, most indoor studies
employ artificial wind speeds much lower during simu-
lated time trials, resulting in a distorted picture of the
influence of air temperature on natural road cycling per-
formance.*>** On the condition that the cyclists are well
acclimatized (see discussion below) they may complete
prolonged TT’s in rather hot conditions (36 °C dry air)
with maintained performance (ie., similar or slightly
increased average speed) as the lower air density in the
heat more than compensates for minor reductions in
power output during such conditions."> In accordance,
power output during indoor trials may also be



maintained at temperatures up to at least 27 °C when
humidity is modest (40% relative humidity) and wind
speed corresponds to the movement speed generated
during outdoor cycling,”® whereas marked reductions are
observed when air movement is minimal (see Table 1).
For prediction of the environmental influence of heat
stress on exercise performance (i.e. measured as power
output) in acclimatized subjects with very high rates of
sweat- and endogenous heat production, it appears that
none of the environmental heat indices that we have
tested (Humidex, apparent temperature, effective tem-
perature or standardized effective temperature; see ref. 44
for a comparison of the different indices) and illustrated
in Figure 1 with WBGT and UCTI, are weighing the
impact of wind speed sufficiently. E.g. with an air temper-
ature of 40 °C and humidity of 50% the WBGT is almost
unaffected by changes in wind speed,” while the UTCI-
index will increase if the wind speed increases, as the
UTCI-index correctly takes increased convective heat
gain into consideration when the skin to air temperature
gradient is reversed,”? but overlooks that increased air
movement will markedly benefit evaporation which may
become restricted at low wind speeds.

For predictions of heat exposure in occupational set-
tings where the workers’ metabolic rate is much lower
compared to that of trained cyclists and if the wind speed
does not vary too much across conditions, it appears that
the UTCI and WBGT may be useful.**” However, it is
important to note that these indices have important limi-
‘[ations,%"*&49
ferences in metabolic heat production. Indeed, the UTCI
includes a fixed metabolic rate and is not intended for
interpretation in relation to different work rates, while
the WBGT does not include metabolic rate in the mea-
sure or calculation when derived from climate service
data. In this light, for predicting the environmental heat

the main being lack of consideration of dif-

stress in athletes or occupational workers with high meta-
bolic rates and substantial reliance on evaporative heat
loss, we propose a much larger weighing of wind speed,
as exemplified by the new integrated index. In this index,
the product of the absolute air temperature (with similar
weighing of dry air and black globe temperature as the
WBGT) and the relative humidity will integrate the envi-
ronmental factors of importance for dry heat exchange
and also incorporate the impact of increasing vapor pres-
sure, as this is affected both by the relative humidity and
temperature. Furthermore, dividing this product by the
square root of the wind speed allows for the index to
include the facilitating effect on evaporation, which
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across the environmental conditions represented in the
included exercise studies, seems to be far more important
than the interfering effects on dry heat exchange.

With multiple linear regression analysis, using the
reduction in mean TT power output from cool control to
exercise in the heat as the dependent (output) parameter
and dry air, black globe, vapor pressure, relative humid-
ity, and wind speed as independent parameters, we were
unable to obtain a better correlation than the one
obtained for the new integrated index (presented in
Fig. 1B and providing a R*> = 0.77; P < 0.001), indicating
that the weighing of temperature, humidity and air
movements apparently are appropriate. While WBGT in
isolation failed to predict cycling performance loss in the
heat (see Fig. 1C), we obtained a significant coefficient of
determination (R* = 0.55; P < 0.05) when the WBGT-
index was divided by the square root of wind speed, again
emphasizing the importance of air movement. All of the
above analysis only included the studies/trials with accli-
matized subjects or athletes accustomed to exercise in the
heat (specified in Table 1). As discussed below, acclimati-
zation markedly improves exercise performance in the
heat, when all studies/trials in Table 1 were included in
the analysis, i.e., mixing unacclimatized and acclimatized
subjects, the strength of the correlation between perfor-
mance and the new integrated index presented in
Figure 1B is lowered (R reduced from 0.77 to 0.54). This
emphasizes the importance of acclimatization, but
besides this parameter, none of the other subject charac-
teristics or reported physiological responses (heart rate,
delta change or absolute core temperature response,
VO,max or sweat rates) were correlated to the changes in
performance or added to the prediction power as evalu-
ated with additional multiple linear regression analyses.
Thus for acclimatized athletes, it appears that the loss of
work capacity during cycling in the heat to a very large
extent is dictated by the ambient conditions and the
physical limits these provide for heat dissipation. While
athletes’ absolute endurance capacity may rely on both
cardiovascular and muscular parameters, the relative
decline during exercise in the heat seems to be highly dic-
tated by the environmental restrains on heat balance.

Influence of acclimatization

Heat acclimatization increases the capacity for dissipating
heat to the environment through increased sweating and
improved ability to support an elevated perfusion of
the skin in conditions of increased cardiovascular
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12:33,34,3051 (see ref. 52 for recent review). Unless the

environment is very humid,” or the wind speed is low

stress.

and insufficient to allow for the increased sweat rate to
evaporate, the acclimatization induced adaptations will
improve the endurance capacity in the heat in both
trained and untrained individuals.’®>**> During fixed
intensity exercise, the improved ability to dissipate heat
results in an attenuation of storage and hence a slower
rise in the individual’s core temperature, prolonging time
to exhaustion,” whereas during self-paced exercise, the
improved ability to dissipate heat allows for an elevated
exercise intensity, as individuals may endure a higher
metabolic heat production owing to improved thermo-
regulatory ability."” E.g. in the outdoor study by Racinais
et al,'® 14 d of heat acclimatization increased average
power output from 256 to 294 W, improving time
required to complete a flat 43 km TT from 77 min in the
unacclimatized state to 66 min following acclimatization.
The ~40 W increase in average power output post-accli-
matization corresponds to an increased metabolic rate of
~190 W and heat production of ~150 W, which was
counterbalanced by an increased sweat rate of 0.3 L/h.
(corresponding to a ~200 W increase in evaporative
cooling power), while the end/peak core temperature and
estimated rate of heat storage were unchanged across
TT’s in the acclimatized and unacclimatized condition.
Matching observations are reported from indoor studies

1*° and Keiser et al.,** indicating that

by Lorenzo et a
trained subjects, both pre- and post-acclimatization,
“exhaust” their heat storage capacity during self-paced
prolonged exercise in the heat, but utilize the improved
capacity for heat dissipation, achieved via acclimatization,
to increase their exercise intensity as adaptations have
rendered them capable of coping with a higher metabolic
heat production in a given environmental heat stress. It
has been debated and investigated if the adaptations
achieved via heat acclimatization may also transfer to
cooler conditions where exercise performance is limited
by other factors than heat balance issues, 223345557 byt it
is beyond the scope of the present review to explore this
complex topic, and we refer the reader to recent cross
talk for a detailed discussion (see refs. 58,59). The physio-
logical factors and/or altered perceptual clues that medi-
ate changes in pacing strategy in the heat and subsequent
adjustments following acclimatization are not well under-
stood, but may involve integration between afferent feed-
back from thermal receptors, cardiovascular changes or
familiarization,®®! but independent of the underlying
mechanisms, it appears that pacing strategies are

intuitively adopted by athletes in individual sports such
as cycling and for team sports such as soccer.'>**

Influence of exercise mode - comparison of running
and cycling

Running and cycling both represent exercise modali-
ties in which endurance trained individuals may sus-
tain very high metabolic rates and hence endogenous
heat productions for prolonged periods, which subse-
quently may become limiting for performance in ther-
mally challenging conditions as previously discussed
and reviewed.!”??%3-% However, running seems to be
affected at lower ambient temperatures (less adverse
environmental heat stress conditions) for 3 major rea-
sons: 1) During outdoor natural settings the lower
exercise movement speed generates less air movement
over the skin and is therefore benefited to a lesser
degree by the facilitated evaporation as previously dis-
cussed. 2) Higher endogenous heat production for a
given metabolic rate,’®® and 3) less benefit from
reduced air density and hence air resistance in run-
ning compared to cycling, where the temperature
effect on air density markedly reduces the aerody-
namic drag and improves the speed achieved for a
given power output.'>*’

In agreement with these considerations, Chan et al.”
reported that triathletes tested in hot and temperate con-
ditions in trials of 40 km cycling and 10 km running were
8 minutes slower in the heat, but this was entirely related
to a reduced running performance while cycling perfor-
mance did not differ between conditions. Furthermore
Ely et al.'® analyzed performances from a large number
of marathon runners completing the same courses in dif-
ferent years under different environmental conditions,
and report that performance for trained runners (with
comparable training status to the cyclists in the studies
represented in Table 1) already becomes affected when
the WBGT surpasses 10°C (it should however be
acknowledged that even the fastest marathon runs differ
in terms of time span compared to the included TT’s). In
agreement, a meta-analysis of ~1.8 million marathon
runs indicates that the fastest performances are achieved
in air temperatures between 5 and 10 °C for male runners
and at ~10°C in females,”" while ambient temperatures
above this level will impair performance. In the analysis
by Ely et al.'® the average performance time was ~5 %
slower for top 3 finishers at a WBGT of 22 °C (compared
to 8°C) while larger performance deteriorations are



apparent for less trained runners. In contrast, Peiffer
et al’® report no difference in performance during
cycling TT’s across these temperatures (i.e. similar power
output at 17, 22 and 27 °C dry air temperature) during
indoor cycling when high wind speeds (matching realistic
outdoor cycling) are applied. For outdoor cycling where
the aerodynamic benefit becomes relevant, acclimatized
subjects may, as previously discussed, maintain average
TT speed and performance at temperatures as high as
36°C or 28°C WBGT," and these differences between
running and cycling highlight the importance of taking
the exercise mode into consideration when evaluating
the impact of a given environmental heat stress. Several
more complex heat strain indices have been developed in
attempt to incorporate all relevant heat stress factors
(environmental, clothing aspects, individual physical and
physiological characteristics; see ref. 23 for an overview),
but most are focused on occupational settings and do not
allow for calculation of the range of metabolic heat pro-
ductions or wind speeds addressed in the present review,
and the rather large influence of exercise mode illustrated
with the differences between running and cycling puts
emphasis on the difficulty of predicting and incorporat-
ing all factors into one universal heat index.

In conclusion, self-paced endurance performance is
markedly influenced by environmental heat stress factors
(i.e., the combination of air temperature plus superim-
posed radiation, humidity and wind speed). However,
the performance impact is markedly modified by the
individual’s acclimatization- and training status and con-
sideration of the exercise mode is of great importance, as
the wind generated by the individual’s movements or by
environmental (either natural or fan generated) air flow
over the skin seems to have a strong influence, as illus-
trated by the integrated index.
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